A PROCESSOR INTERFACE MODEIL FOR FAST SYSTEM
SIMULATIONS

Gary Bolotin

Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, [A 91109
bolotin@1telerobotics.jpl.nasa.pgov

Abstract

This paper presents an alternative technique
for performing board level simulations of
designs involving Processors. This technique
requires only a standard “C” compiler and a few
simulation library functions to perform
accurate board level simulations. This method
is currently being used to simulate the IBM
1750A based GVSC inter-Subnsscn~bly Bus
(1 SB) and ASICs that are being developed for
the Cassini spacecraft. This meth()(is
superior to the conventional processor
modeling technigques, which involve the use of
detailed hardware modeling Or extensive
behavioral models.

1. Introduction

When developing ASICs that interlace o Processors, a
board level simulation is required to shovs that the ASICs
under development will function properiy at the system
level. This functionality isusually verified by means of a
system level simulation. This simulation} should involve
alldevices that interact with the ASICs under development,
Simulat ions of this complexity arc tradit.onally long and
cumbersome, Several complex and computationally
intensive simulation models need to be used. As an
cxample, system level simulations involving a processor
require amodel for it dlong with it' s associated memory
and 1/O devices. 1" he processor model is usually onc of the
most complex models required. Simulations of the
processor alone can be quilt intensive and lime consuming.
This paper presents an alternative way of modeling the
processor and associated memory devices.

The paper will start by discussing the various techniques
available for simulating processors. An alternative method
for modcling the processor will then be introduced. “ J 'his
method will be illustrated by means of asimple example.
This methodology can be used for modeling arbitrarily

complex processors, and has been used at JPL to model the
IBM 175(JA based GVSC Engincering Flight Computer
(EFC) Inter-Subassembly Bus (ISB) used on the Cassini
spacecraft,

2. Conventional Frocessor Modeling
Techniques

Processors can be modeled using severa different
methods. The two most common methods arc listed
below. The third method, the processor interface model,
the subject of this paper, will be discused in detail in an
upcoming scction,

1). Hardwarc model
2). Behavioral model (software - VI 1D1.)
3). The processor interface model.

2,1 Hardware Modeling Techinque

The hardware modcling technique makes usc of actual
device hardware to perform the desired simulation. This
technique can vary from building the system entirely in
hardware, to using a hardware modcling library, similar to
the Mentor HM L. [1] Both of these mcthods require the
actual processor to perform the simulation. When building
1ge system entirely in hardware, FPGAs and Pl .Ds can be
uscd to implement ASICs that have not been fabricated.
Softwarc iS then written and exccuted to test for proper
operation.

The hardware modeling 1 ibrary works by taking the
output of the system simulation and applying it to an
actual processor. The processor is thco clocked, and the.
resulting sampled processor outputs, arc then applied as
inputs 10 tile system simulation. The simulation is then
clocked, and so on. Although this technique can be quite
accurale, it can be very expensi VC intern1sof resources and
time.

2.2 Behavioral Modeling Techinque

The softwarc modeling method requires the development
of a softwarc model which will simulate the processor.
This can range from a high level description to a full gate
level model. Software models can be developed using a
hardware modeling langnage such as V}] D1, or Ihcy can be
produced using a language native 10 the simulator.
Softwarc models arc typically required to model the
Processor in every mode of operation, e.g. instruction
fetch, execute, and prefeiching Of instructions. All internal
registers and interactions may need to be modcled. Some
processors may bc modeled allthe way down 10 lilt gate
level. The software that needs to bc developed for a
software modcl can be quite extensive. A complicated
software modelmight take. up a magjor portion of the
simulators memory space and may slow down the
simulation significantly.

The two software techniques just described, allmodel the
processor down at least to the register level. In order to
function properly both of lilt above methods rely on native
code being presented to the processor model.

For example, assuming onc is simulating an 8086 bascd
system ¢cm a simulator running on a SUN workstation, onc
would nced to present 8086 native code. to the processor
within the simulation. This code would control the
operation of the processor and thus the verification of the
system design. An 8086 cross compiler that runs on the
SUN workstat ion is required to produce this code, The
8086 test software would be compiled and linked on the
SUN workstation.

T* he. resulting exccutable image would then be loaded
into the simulator. This can bc done, by initializing a
ROM model with such code and telling the processor to
begin exccution from the ROM, a very iime consuming
process. In addition the processor Will be repeatedly
feiching code from memory. An interaction which when
shown to work once in the simulation, need not be
repeat ed.

Another drawback is that once the processor fetches data
of an unknown value, for whatever reason, the entire.
simulation is like.iy 1o bc corrupted, Using this method it
is also hard to detect errors when they occur. The results
could be checked by hand, or code for monitoring the
results needs 10 be written, This would just further
lengthen simulation lime.

3. Processor Interface Modeling Technique

Our model is based on the fact that when using a
simulator to verify a systemlevel design . the designer is
concerned mainly with tile proper intzraction of the
processor, mcrnory, 1/0 devices, and ASIC/s under
development. This technique models the processor at the
interface to the outside world. A detaited processor model
is not required. This technique makes usc of only a

standard “C” compiler and simple simulation library
functions to simulatc proper processor behavior.

This method simulates processor behavior by “forcing”
the pins of tile processor or processor bus in such away
that proper operation iS simulated. The basic development
flow is shown in Figure 1. ‘T'est vectors arc produced
using a“C" language lest program. The “C” language test
program is compiled, linked and exccuted on tire
simulator's host computer. When exccuted, the. test
program will produce atest vector file that is then applied
to the simulator. Using simulator commands these vectors
manipulate the pins of the processor to simulate its
opceration in the system, Using a simulator system call,
the vectors can also check for proper operation. For
cxample on amad cycle, the, lest vectors can test that proper
data has been read back. An error message can be printed if
the data read is not what is expected. A log of cycles
performed can be kept simply by printing 1o the

simulator’s list window.
Simulator *@:

g e (]
Force
Ic|sl | Compller Elie
ile

Figure 1. Test Vector Development Flow

31 Required Simulator System Functions

In order to check for proper simulation resultsit is
required that the simulator have some way for the
cxceuting tesi vector program to have access to the value
of nodes within the simulator. The Mentor Grapbhic
Quicksim simulator can do this by means of the system
cal "$signal_valuc" and "$sim_time"[2]. The function
Ssignal_value is called with a simulator net name and a
simulation time. The routine will return the value of the
net at the simulation time requested. The system value
$sim_ lime represents the. current simulation time.. These
functions can be encapsulated in a simulator specific
subroutine, check_output which compares a signal to an
cxpected value, and will print an error message if values
compared arc not cqual. The simulator command “write
line” isuscd to output to the simulator’s list window, Ttrc
routine, check output is called with the node that isto be
compared arid the valuc that is expected.

check_output{node_name,data_expected)
char* string
unsigned int data_expected;
(printf("assign val A($signal_ valuc (%s',
$sim_time))\n",node_ name);
printf("if Aval <> %X’ then\n”,data_cxpected);
printf(" write 1 inc 'Compare Failure' A$sim_time
"Unexpected valug' ‘val * Expected '
Agx ‘on signal %s\n", data_ expected,
nde, name);
printf("end if");

}

Figure 2. Check Output Routine

3.2 XExample

As an example, suppose wc want 1o sSimulate a processor
with a very simple asynchronous bus protocol as
illustrated in figure 3, 4 and 5, and described as follows.
Tor the purpose of this example the Mentor Graphics
Quicksim simulator is to be assumed,

Wric Cycle

). "Address and Data are put on to the bus.
2). The signa ADVn is asserted.

3). Wait for slave to assert DTACKn.

4). Deasscrl ADVn,

5). Remove Address and Data.

6). Wait for DTACKn to be deasserted.

Read Cycle
1). Address isput on to the bus.
2). The signal ADVn isasscried.
3). Wait for dave 1o assert DTACKn.
3. Sample Data lines.
. Deassert Al DVn,
6). Remove Address and Data.
7). Wait for DTACKn to be deasserted.

Example
Microprocessor
Address | =3
Data |-
ADVn | /¥
DTACKn |—--
RHn —
wRn |-—»
Figure 3. Example Processor
tsot thold
Address —& valid T) m—
DATA = 4 valid >
ADVn X J—— —
RO] \ T
DTACKn ~ N

Figure 4. Rcad Cycle

tset thold
Addross —f valid S
DATA "1 vaid e
ADVR T N~
WRn —j'é; \ / BT
DTACKn \\t\! N

Figure 5. Write Cycle

3.2.1 Basic Routines

Two basic routines need to be written, one to simulate a
rcad cycle and another onc to simulate the write cycle. The
read routing is called with the address of the data word that
iS to be read, and the expected value of this word. If the
data read is different from the expected value, an error
message is printed to the simulator's list window. This is
handled by the routine check_output described above. The
read routing is shown in figure 6.

rcad(address data)

unsigned int address,data;

{ printf("write line. ' READ address: %x data

%ox\n" jaddress,dala_cxpected);

printf("’forcc, ADDRES S %x\n" address);
prin[f('forcc | YATA %x\n",address);
printf("run %d\n", TSET)
Drirll rE’ "forcc RDnO\n");
pril]tf("’ forcc ADVR O\n");
prinlr(’’brcak DTACKn O\,
chink. output(DATA data_cxpected);
prinlr(’forcc RDn1\n");
printf’("’forcc Abvn Ib");
printf("run %d\n", THOL .I3)
Drilltl_("’forgc.t force ADDRESS \n");

)

Figure 6, Rcad Routine

The write routine S called with the address of the data
word that is to be written , and it's valuc. When exccuted, a
simulated write operation is performed. The write routing
isshown in figure 7.

wri te(address,data)

unsigned int address,data;

{
printf("writc line WRITE address; %x data

%ex\n" address,data);

printi("force ADDRESS 9%0x\n" ,address);
printf("run %d\n", TSET)
prin’ f("'forcc. Al >Vn(\n");
prin!f%”forcc WRn O\n");
prinir(’brcak | YTACKn On");
cheek_output (1ATA data_expected);
printl_("’forcc WRnlw");

pr'iatf(’’ forcc ADVn 1\n"),
printf("'run %*'", T'}101 D)

prin[f(’' forgct force ADDRESS \n);
printf("forget force DATA \n);

)

Fipure 6. Write Routine

3.2.2 Main Routine

We can now use the above routines to simulate the
processor interfacing with the rest of the system.
Instruction fetches €an be simulated by reading from ROM
orRAM memory spaces. ASIC and 1/0 functionality can
bc tested by writing to ASIC or 1/0 device registers and
reading back the, expected results,

Asan example., Wc can usc the routines jast described, t0
test a block of ASIC registers that arc beth readable and
writcable. We can write asimple. loop to perform this
function as follows.

for (addr = START_BLOCK; addr <=
STOP_BLOCK; addr++4)
write(addr PATTERN);
rcad(addr,PATTERN);

Figure 8. Simple Test Loop

The test loop shown above would write the value
PATTHRN to every register from START_ BI.OCK to
STOP BLOCK. After the write operation is completed,
proper operation is check by reading the register back using
the read routine. An ongoing log of resultsis kept in the
simulator’ s list window. Any errors encounltcred during the
simulation arc also recorded there. Figere 9 shows and
example from the simulator's list window.

WRITE address: 78F5 data: 1345
READ address: 78F5 data: P3411
WRITT ¢ address: 7856 data: 1F34E
RYIAD address: 78H6 data: 1341 ¢

WIW1' 11 address; 787 data: 1134

READ address:78F7 data: 1341

Compare Faiture Unexpected Value: ¥341¢
Expected: F34E !

Figure 9, Example Simulator’'s 1 .ist Window

3.3 Discussion

‘1 ‘he benefits Of the deseribed method are portabil ity,
simplicity anti efficiency. The same routine that is
developed to test the ASICs and 1/0 devices in the
simulated environment can be aso used s test the ASICs
and1/O devices in the rcal system afte: the ASICs arc
fabricated. ‘i 'his ismade possible because the, "¢ language

iS portable from system to system. 1 £ on the other hand,
the test vectors were written in a sim ulator specific
language, the test vectors developed will have little use
outside the. simulator. ‘I'his technique frees the user from
developing code native to the target processor thus
allowing thec user tO concentrate on the task at hand;
verifying that the proper interaction of the processor,
ASICs andother dc.vices within the system. The simple
nature, of the modeling method makes efficient use of
simulation resources.

4. Conclusion

Wc have presented asimple, clegant and inexpensive
technique for performing system simulations. The
technique is currently being used with great success at JPI.
to model the IBM 1750A based GVSC Engincering Flight
Computer (EFC) Inter-Subassembly Bus (1 SB) used on the
Cassini spacecraft. .

5. References

[11 Mentor Graphics, Hardwarc Modelling 1.ibrary
l&Ls-._Miul.ual, Version 6.0, 1990.

[2] Mentor Graphics, System Calls and_library
Fungctions, Version 6.0, 1990.

6. Acknowledgm ent

This research described in this paper was carried out by
the Jet I'repulsion l.aboratory, California Institute of
Technology, under a contract With the National
Acronautics and Space, Administration,

